1．（10\％）Solve $\left(y^{2}-y\right) d x+x d y=0$ with $y(1)=2$
2．(15%) Find the integrating factor and solve ：

$$
2 \sin y d x+\cos y d y=0, y(0)=\frac{\pi}{2}
$$

3．(10%) Solve the general solution $y^{\prime \prime}+5 y^{\prime}+6 y=e^{-2 x}$

4．（15\％）Find the eigenvalues and eigenvector of the matrix

$$
A=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 4 & \sqrt{3} \\
0 & \sqrt{3} & 6
\end{array}\right]
$$

5．（15\％）Evaluate the integral

$$
\oiint_{s}[(y+z) d y d z+(z+x) d z d x+(x+z) d x d y] \text {, where } s: x^{2}+y^{2}+z^{2}=1 \text {. }
$$

6．（15\％）If $f(x)=1-\frac{x}{2}, 0 \leq x \leq 2$ ，（a）find the Fourier coefficients（with full－range expansions）．（b）Find the Fourier cosine series（with half－range expansions）．

7．(10%) Find the integral ： $\int \frac{\cos x \omega}{1+\omega^{2}} d \omega$ ．
8．（10\％）Let \vec{F} be a continuous vector field with continuous first and second partial derivatives．Prove that $\nabla \cdot(\nabla \times \bar{F})=0$.

