1．Solve the following ordinary differential equation．
$x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{4} e^{x}$,
$y(2)=2, y^{\prime}(2)=7 \quad(25 \%)$
2．Show the following Laplace transforms of functions．
（a） $\mathrm{L}\left[\mathrm{e}^{\mathrm{at}}\right]=\frac{1}{(\mathrm{~s}-\mathrm{a})}(10 \%)$
（b） $\mathrm{L}[\sin \mathrm{bt}]=\frac{\mathrm{b}}{\mathrm{s}^{2}+\mathrm{b}^{2}}(15 \%)$

Prob． 3 （15\％）
A vector $\vec{v}=\left[\begin{array}{c}1 \\ -2 \\ -1\end{array}\right]$ with respected to the basis $\left\{\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ ．
Please find the components of the vector with respected to the basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$

Prob． 4 （35\％）
For the system $\dot{Y}=\mathrm{A} Y+H$
where $Y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right], \mathrm{A}=\left[\begin{array}{cc}5 & 8 \\ -6 & -9\end{array}\right], H=\left[\begin{array}{l}1 \\ t\end{array}\right]$
（1）Evaluate the eigenvalues of \mathbf{A} ．
（2）Evaluate the eigenvactors X_{1}, X_{2} of A 。
（3）Evaluate $\mathbf{D}=\mathbf{X}^{-1} \mathrm{~A} \mathbf{X}$ where $\mathrm{X}=\left[X_{1}, X_{2}\right]$
（4）Let $Y=\mathbf{X Z}$ and substituting into the system，please find the equation for Z ．
（5）Let $Y(0)=\left[\begin{array}{c}4 \\ -3\end{array}\right]$ ，please solve $Y(t)$

系所：機械系
科目：自動控制（1）

1．For the translational mechanical system with a nonlinear spring shown below．The spring constant is defined by $x(t)=1-e^{-j s(t)}$ ，where $x(t)$ is the spring displacement and $f s(t)$ is the spring force．
（a）Write the nonlinear differential equation of motion for the system．
（10\％）
（b）Find the linearized transfer function，$G(s)=X(s) / F(s)$ ，for small excursions around $f(t)=l .(15 \%)$
［Hint：（1）$y=e^{x} \rightarrow>\ln y=x$ ；（2）$d(\ln y) / d y=1 / y$ ］

2．A unity negative feedback system has the plant transfer function

$$
G(s)=\frac{K}{s(s+\sqrt{2 K})}
$$

（a）Determine the $\% O S$ and T_{s}（settling time）due to a unit step input． （10\％）．
（b）For what range of K is the settling time less than 1 second？ （15\％）

第 2 面供 2 面

國立雲林科技大學 102 學年度碩士班暨碩士在職專班招生考試試題
 系所：機械系
 科目：自動控制（1）

3．如下圆，被控制系統 $\mathrm{G}(\mathrm{s})$ 無法满足性能需求，基於根軌跡技術，試依下述提問回答 controller 的設㖕問題。 25%

a．試說明 $「$ 純積分器」「PI controller」「Lag Compensator」 等三類 controller，係用於改善系統的何種性能指標？三類 controller 的功能有何差異？
b．試說明「純微分器」「「PD controller」，「Lead Compensator」等三類 controller，係用於改善系統的何種性能指標？三類 controller 的功能有何差異？

4．被控制系統如下圖所示；請設計補傊器，使補偵後系統的\％ 0 S 興補偗前暞同維持在 15% ，補償後系統的 T_{5} 降為補償前的 $1 / 3$ ，補償後系統的 steady state error 降為補償前的 $1 / 10$ ；請詳列補償器的設計流程。 25%

$$
\begin{aligned}
& T_{\mathrm{P}}=\frac{\pi}{4_{n} \sqrt{1-t^{2}}}=\frac{\pi}{\omega_{d}} \quad, 80 \mathrm{~S}=\mathrm{e}^{-\omega / \sqrt{1-\zeta^{2}}} \times 100 \% \\
& T_{5} \cong \frac{4}{5 \omega_{n}}=\frac{4}{\sigma_{d}} \quad \zeta=\cos \theta
\end{aligned}
$$

（可能涉及的公式，請参考）

國立雲林科技大學 102 學年度
 系所：機械系
 碩土班暨碩士在職專班招生考試試題 科目：機械製造

1．（a）Explain briefly what is meant by a dislocation．
（b）Show how dislocations can account for the following observations：
（i）cold working makes aluminum harder；
（ii）an alloy of $20 \% \mathrm{Zn}, 80 \% \mathrm{Cu}$ is harder than pure copper；
（iii）the hardness of nickel is increased by adding particles of thorium oxide．

2．試簡述說明以下4種幾何量測原理：「比較測量原理」「阿貝比長原理」「正弦正切原理」和「圆周封閉原理」 ${ }^{\circ}$

3．就結構設計與製造加工上的考量，比較說明常用於自行車車架使用之鉻鉬鋼，鋁合金及碳䌊維的特性，及其應用於自行車製造成型上可能使用之加工方法。

4．請說明硬度測試時的基本原理並就下列硬度測試方法進行測試程序上的說明：
（1）Brinell Test
（2）Rockwell Test
（3）Vickers Test

5．高分子材料之應用日趐廣法，其特性迥異於一般金蚐材料。請說明下列高分子材料特性：
（1）Glass－transition Temperature
（2）Thermoplastics
（3）Thermosetting Plastics

6．積體電路（IC）的製造程序中，分鳥祬式蝕刻與乾式蝕刻兩種 0 請列舉三種乾式蝕刻的
方法並簡述其原理。

國立雲林科技大學102學年度
 系所：機械系
 碩士班暨碩士在職專班招生考試試題 科目：材料力學

1．A rod $A B$ has two different cross－sectional areas as shown in Figure 1．The rod is rigidly attached to immovable supports at the ends and is loaded by equal and opposite forces P at the locations shown．Determine the axial stress σ at the middle of the rod，assuming A_{1} is the cross－sectional area near the ends，and A_{2} is the cross－sectional area in the middle region．（Use numerical data as follows： $P=5400 \mathrm{lb}, A_{1}=0.6 \mathrm{in.}^{2}, A_{2}=0.9 \mathrm{in}^{2}$ ，and $b=1.5 \mathrm{a}$ ．）

Figure 1

2．A solid shaft is formed of two materials，an outer sleeve of steel（shear modulus $G_{\mathrm{s}}=80 \mathrm{GPa}$ ）and an inner rod of brass（shear modulus $G_{\mathrm{b}}=36 \mathrm{GPa}$ ），as shown in Figure 2．The outside diameters of the two parts are 75 mm and 60 mm ． Assuming that the allowable shear stresses are $\tau_{5}=80 \mathrm{MPa}$ and $\tau_{\mathrm{b}}=48 \mathrm{MPa}$ in the steel and brass，respectively．Determine the maximum permissible torque T that may be applied to the shaft．

Figure 2

3
 國立雲林科技大學 102 學年度
 系所：機械系
 碩士班暨碩士在職專班招生考試試題
 科目：材料力學

3．The drill is jammed in the wall and is subjected to the torque and force shown． Determine the state of stress at point B on the cross section of drill bit at section $a-a$ ．The distance from the centroid of a semi－circle to its boundary diameter is $4 r / 3 \pi$ ．［25\％］

Section $a-a$

4．The beam is subjected to the linearly varying distributed load，and $E I$ is constant．（a） Determine the maximum deflection of the beam．（b）Determine the maximum slope of the beam．［25\％］

19 國立雲林科技大學 102 學年度
 系所：機械系
 碩士班暨碩士在職專班招生考試試題 科目：流體力學

1．Three containers connected at the base are filled with a liquid．The top of each container is open to the atmosphere and surface tension is negligible．The container shapes are all different．（a）Is the fluid level in the containers at equilibrium conditions shown in the figure correct？If．not，what should it look like？（b）A，B and C represent the locations at the base of each container as shown． Based on your answer in（a），which point has the highest pressure？Why？（25\％）

2．Water flows steadily through a horizontal circular pipe from a reservoir．（a） Compare the Energy Grade Line（EGL）for different pipe diameters with same water level in the reservoir under the ideal and real situations；（b）Under which flow situation，the wall shear stress will be lower？Laminar or turbulent？Why？（c） How does the wall shear stress vary along the pipe in the entrance region （developing flow）？（25\％）

3．A water siphon（虹吸管）has a constant inside diameter of 3 inches．If the friction loss between A and B is $0.6 \mathrm{~V}^{2} / 2$ ，where V is the velocu of flow in the siphon， determine the flow rate involved． $\mathbf{2 5} \%$

4．Assume the flow around the long circular cylinder is non viscous and incompressible．Two pressures，P_{1} and P_{2} ，are measured on the cylinder surface． It is propose that the free stream velocity， U ，can be related the the pressure difference，$\Delta P=P_{1}-P_{2}$ ，by the equation

$$
U=C \sqrt{\frac{\Delta p}{\rho}}
$$

Where ρ is the fluid density．Determine the value of constant C ．Neglect the body force． $\mathbf{2 5 \%}$

