

國立雲林科技大學 111 學年度 碩士班招生考試試題

系所:電機系

科目:工程數學(1)

1. (15%) Solve the general solution of the following differential equations: [解下列微分方程式之通解]

(1)
$$y' = 5\sin 3x$$
 (5%); (2) $y' + 5x^4y = 3x^2e^{-x^5}$ (5%); (3) $x^2y' = y^2 + xy$ (5%).

- 2. (10%) Solve the following initial value problems: $y'' + 9y = 16\sin x$; $y(\pi) = 0$, y'(0) = 0 (10%)
- 3. (15%) Use the Laplace transform or inverse transform to solve the given problems:

(1)
$$f(t) = t^2 + e^{-6t} + \sin 6t$$
; $\Re F(s) = L \lceil f(t) \rceil$ (5%);

(2)
$$F(s) = \frac{8}{s(s-2)^2}$$
; $\Re f(t) = L^{-1}[F(s)]$ (5%);

(3)
$$y'(t) + \int_0^t y(\tau)d\tau = 2 - 2\sin t$$
, $y(0) = 0$; $\Re y(t)$ (5%).

4. (10%) Use the Laplace transform to solve the given initial value problem [利用拉氏轉換求解

微分方程式]:
$$\frac{dy(t)}{dt} - 3y(t) = te^{3t} \sin t$$
, $y(0) = 0$ ° (10%)

5. (20%) Let
$$A = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 2 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$
.

- (a) Find the eigenvalues and associated eigenvectors (10%)
- (b) Factor A into a product XDX^{-1} , where D is a diagonal matrix, and then use the factorization to compute A^{5} . (10%)
- 6. (10%) Determine whether the set S is linearly independent or linearly dependent.

(a)
$$S=\{(-4, 3, 4), (1, -2, 3), (6, 0, 0)\}$$
 (5%)

(b)
$$S=\{(6, -7, 8, 6), (4, 6, -4, 1), (2, 19, -16, -4)\}$$
 (5%)

7. (10%) Consider the matrix $A = \begin{bmatrix} 1 & 4 & 2 & 1 \\ 0 & 1 & 1 & -1 \\ -2 & -8 & -4 & -2 \end{bmatrix}$, find the null space, rank, and nullity of

A. (10%)

8. (10%) For a matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 7 & 7 & 8 \\ 1 & 2 & 1 \\ 7 & 7 & 6 \end{bmatrix}$, apply the Gram-Schmidt process to find an orthonormal

basis for the column space of A. (10%)

國立雲林科技大學 111 學年度

碩士班招生考試試題

系所:電機系

科目:電路學

- 1. Find the equivalent capacitance C_{eq} in the circuit shown in Fig. 1. (10%)
- 2. Find voltage V_x and current I_x in the circuit of Fig. 2. (20%)

Fig. 1

Fig. 2

- 3. In the circuit of Fig. 3, the sinusoidal voltage source is given by $v_s(t) = 10\sqrt{2}\sin(10t)$ V. The switch closes at t=0. Find the current i(t) for t>0. (20%)
- 4. The current waveform in Fig. 4 is flowing through a 2- Ω resistor. Determine the rms value of the waveform and the average power delivered to the resistor. (16%)

Fig. 3

Fig. 4

- 5. In the balanced three-phase system shown in Fig. 5, the line voltage is 13.8 kV rms. Find the values of the capacitors C such that the total load has a power factor of 0.95 lagging. (16%)
- 6. Realize the transfer function $\frac{\mathbf{V}_o(s)}{\mathbf{V}_i(s)} = \frac{-2s}{s+10}$ using the circuit in **Fig. 6**. Determine C_1 and C_2 . (18%)

 C_1 C_2 V_i V_i