1．The bottom node G in the circuit of Fig． 1 refers to the reference node of zero potential．Find the voltages V_{b} and V_{c} ．(10%)

2．Find the currents I_{a} and I_{b} in the circuit shown in Fig．2．（20\％）

Fig． 1

Fig． 2

3．The switch in the circuit of Fig． 3 has been closed for a long time before opening at $t=0$ ． Find the current $i(t)$ for $t>0$ ．（20\％）

4．Determine v_{o} in the circuit in Fig．4．（15\％）

Fig． 3

Fig． 4

5．A balanced three－phase source serves three loads，as follows：
Load 1： 24 kW at 0.6 lagging power factor
Load 2： 10 kW at unity power factor
Load 3： 12 kVA at 0.8 leading power factor
If the line voltage at the loads is 208 V rms at 60 Hz ，we wish to determine the line current and the combined power factor of the loads．（ 15% ）

6．The transfer function for a network is

$$
\mathbf{H}(s)=\frac{s+10}{s^{2}+4 s+8}
$$

Determine the pole－zero plot of $\mathbf{H}(\mathrm{s})$ ，the type of damping exhibited by the network，and the unit step response of the network．（20\％）

1．（15\％）Solve the general solution of the following differential equations：
（1）$y^{\prime}=5 \sin 3 x \quad(5 \%)$
（2）$y^{\prime}+y=e^{5 x} \quad(5 \%)$
（3）$\frac{d y}{d x}=(x+y+3)^{2}(5 \%)$
2．（15\％）Use the Laplace transform or inverse transform to solve the given problems：
（1）$f(t)=t e^{4 t}+e^{2 t} \sin t$ ；求 $F(s)=\mathcal{L}[f(t)](5 \%)$
（2）$F(s)=\frac{e^{-2 s}}{s(s-1)}$ ；求 $f(t)=\mathcal{L}^{-1}[F(s)] \quad(5 \%)$
（3）$f(t)=\int_{0}^{t} \sin \tau \cos (t-\tau) d \tau$ ；求 $F(s)=\mathcal{L}[f(t)](5 \%)$
3．（10\％）Use Laplace transform to solve the given initial－value problem：

$$
y^{\prime \prime}-y^{\prime}=e^{t} \cos t, y(0)=0, y^{\prime}(0)=0
$$

4．（10\％）Solve the given Cauchy－Euler differential equation：

$$
2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=x^{2}-x
$$

5．（15\％）Show that（a）the set V of all symmetric 2×2 matrices is a vector space，and find the dimension of V ．（b）Find a basis of V consisting of invertible matrices．
6．（15\％）Compute the rank of matrix $A=\left[\begin{array}{cccc}1 & 2 & 2 & -1 \\ 3 & 6 & 5 & 0 \\ 1 & 2 & 1 & 2\end{array}\right]$ and find the bases for the row space and column space of A ．

7．（10\％）Using Gram－Schmidt orthogonalization algorithm，find an orthogonal basis of the row space of $A=\left[\begin{array}{cccc}1 & 1 & -1 & -1 \\ 3 & 2 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$

8．(10%) Compute A^{8} using block multiplication，where $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & -2\end{array}\right]$ ． Hint： $\mathrm{A}=\left[\begin{array}{ll}X & 0 \\ Y & Z\end{array}\right], X=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right], Y=\left[\begin{array}{ll}1 & -1\end{array}\right], Z=[-2]$

